Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys Chem ; 307: 107200, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367540

RESUMO

In this study, we conducted Ferguson plot analyses using both agarose and polyacrylamide gels in native electrophoresis and SDS-PAGE. The results revealed intriguing differences in the behavior of bovine serum albumin (BSA) and other model proteins. Specifically, BSA exhibited Ferguson plot slopes that were dependent on the oligomer size in agarose native gel electrophoresis, while such size-dependent behavior was not observed in native-PAGE or SDS-PAGE. These findings suggest that Ferguson plot analysis is a suitable approach when using agarose gel under the electrophoretic conditions employed in this study. Furthermore, our investigation extended to model proteins with acidic isoelectric points and larger molecular weights, namely Ferritin and caseinolytic peptidase B (ClpB). Notably, these proteins displayed distinct Ferguson plot slopes when subjected to agarose gel electrophoresis. Intriguingly, when polyacrylamide gel was employed, ClpB exhibited multiple bands, each with its unique Ferguson plot slope, deviating from the expected behavior based on molecular size. This divergence in Ferguson plot characteristics between agarose and polyacrylamide gels points to an interesting and complex interplay between protein properties and gel electrophoresis conditions.


Assuntos
Resinas Acrílicas , Endopeptidase Clp , Proteínas , Sefarose , Eletroforese em Gel de Poliacrilamida , Eletroforese em Gel de Ágar/métodos , Géis
2.
Curr Issues Mol Biol ; 46(1): 621-633, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38248342

RESUMO

In this study, we review the properties of three anionic detergents, sodium dodecyl sulfate (SDS), Sarkosyl, and sodium lauroylglutamate (SLG), as they play a critical role in molecular biology research. SDS is widely used in electrophoresis and cell lysis for proteomics. Sarkosyl and, more frequently, SDS are used for the characterization of neuropathological protein fibrils and the solubilization of proteins. Many amyloid fibrils are resistant to SDS or Sarkosyl to different degrees and, thus, can be readily isolated from detergent-sensitive proteins. SLG is milder than the above two detergents and has been used in the solubilization and refolding of proteins isolated from inclusion bodies. Here, we show that both Sarkosyl and SLG have been used for protein refolding, that the effects of SLG on the native protein structure are weaker for SLG, and that SLG readily dissociates from the native proteins. We propose that SLG may be effective in cell lysis for functional proteomics due to no or weaker binding of SLG to the native proteins.

3.
Eur Biophys J ; 53(1-2): 1-13, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160206

RESUMO

Gel electrophoresis, a transport technology, is one of the most widely used experimental methods in biochemical and pharmaceutical research and development. Transport technologies are used to determine hydrodynamic or electrophoretic properties of macromolecules. Gel electrophoresis is a zone technology, where a small volume of sample is applied to a large separation gel matrix. In contrast, a seldom-used electrophoresis technology is moving boundary electrophoresis, where the sample is present throughout the separation phase or gel matrix. While the zone method gives peaks of separating macromolecular solutes, the moving boundary method gives a boundary between solute-free and solute-containing phases. We will review electrophoresis as a transport technology of zone and moving boundary methods and describe its principles and applications.


Assuntos
Hidrodinâmica , Projetos de Pesquisa , Eletroforese
4.
Antibodies (Basel) ; 12(4)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873861

RESUMO

The poly-reactivity of antibodies is defined as their binding to specific antigens as well as to related proteins and also to unrelated targets. Poly-reactivity can occur in individual molecules of natural serum antibodies, likely due to their conformation flexibility, and, for therapeutic antibodies, it plays a critical role in their clinical development. On the one hand, it can enhance their binding to target antigens and cognate receptors, but, on the other hand, it may lead to a loss of antibody function by binding to off-target proteins. Notably, poly-reactivity has been observed in antibodies subjected to treatments with dissociating, destabilizing or denaturing agents, in particular acidic pH, a common step in the therapeutic antibody production process involving the elution of Protein-A bound antibodies and viral clearance using low pH buffers. Additionally, poly-reactivity can emerge during the affinity maturation in the immune system, such as the germinal center. This review delves into the underlying potential causes of poly-reactivity, highlighting the importance of conformational flexibility, which can be further augmented by the acid denaturation of antibodies and the introduction of arginine mutations into the complementary regions of antibody-variable domains. The focus is placed on a particular antibody's acid conformation, meticulously characterized through circular dichroism, differential scanning calorimetry, and sedimentation velocity analyses. By gaining a deeper understanding of these mechanisms, we aim to shed light on the complexities of antibody poly-reactivity and its implications for therapeutic applications.

5.
Biophys Chem ; 301: 107095, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37611350

RESUMO

Ferguson plot was used to characterize the multiple intermediate species of bovine serum albumin (BSA) upon thermal unfolding. Differential scanning calorimetry showed an irreversible melting of BSA in Tris-HCl and phosphate buffers with a mid-transition temperature, Tm, of ∼68 °C. Thermally unfolded BSA was analyzed by agarose native gel electrophoresis stained by Coomassie blue and SYPRO Orange staining as a function of pH or protein concentration. SYPRO Orange was used to stain unfolded proteins. BSA heated at 70 and 80 °C, i.e., above the Tm, formed multiple intermediate species, which depended on the pH between 7.0 and 8.0, protein concentration and which buffer was used. These intermediate species were analyzed by Ferguson plot, which showed that BSA heated at 60 °C had a similar size to the native BSA, indicating that they are either native or native-like state consistent with no SYPRO Orange staining. The intermediate species observed at higher temperatures with the mobility less than that of the native BSA showed a steeper Ferguson plot and were stained by SYPRO Orange, indicating that these species had a larger hydrodynamic size than the native BSA and were unfolded.


Assuntos
Hidrodinâmica , Soroalbumina Bovina , Varredura Diferencial de Calorimetria , Temperatura de Transição , Animais , Bovinos
6.
J Chromatogr A ; 1702: 464091, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37269642

RESUMO

Hydrophobic interaction chromatography (HIC) is a commonly used chromatography technique for purifying proteins. It utilizes salting-out salts to facilitate the binding of native proteins to weakly hydrophobic ligands. There have been three proposed mechanisms for the promoting effects of salting-out salts, which include the dehydration of proteins by salts, cavity theory, and salt exclusion. To evaluate the above three mechanisms, an HIC study was conducted on Phenyl Sepharose using four different additives. These additives included a salting-out salt (NH4)2SO4, sodium phosphate that increases the surface tension of water, a salting-in salt MgCl2, and an amphiphilic protein-precipitant polyethylene glycol (PEG). Results indicated that the first two salts resulted in protein binding, while MgCl2 and PEG led to flow-through. These findings were then used to interpret the three proposed mechanisms, which showed that MgCl2 and PEG deviated from the dehydration mechanism, and MgCl2 also deviated from the cavity theory. The observed effects of these additives on HIC were reasonably well explained for the first time by their interactions with proteins.


Assuntos
Desidratação , Sais , Humanos , Sais/química , Cromatografia/métodos , Proteínas/química , Cloreto de Sódio/química , Polietilenoglicóis/química , Interações Hidrofóbicas e Hidrofílicas
7.
Electrophoresis ; 44(17-18): 1446-1460, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294166

RESUMO

A new protocol for conducting two-dimensional (2D) electrophoresis was developed by combining the recently developed agarose native gel electrophoresis with either vertical sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) or flat SDS agarose gel electrophoresis. Our innovative technique utilizes His/MES buffer (pH 6.1) during the first-dimensional (1D) agarose native gel electrophoresis, which allows for the simultaneous and clear visualization of basic and acidic proteins in their native states or complex structures. Our agarose gel electrophoresis is a true native electrophoresis, unlike blue native-PAGE, which relies on the intrinsic charged states of the proteins and their complexes without the need for dye binding. In the 2D, the gel strip from the 1D agarose gel electrophoresis is soaked in SDS and placed on top of the vertical SDS-PAGE gels or the edge of the flat SDS-MetaPhor high-resolution agarose gels. This allows for customized operation using a single electrophoresis device at a low cost. This technique has been successfully applied to analyze various proteins, including five model proteins (BSA, factor Xa, ovotransferrin, IgG, and lysozyme), monoclonal antibodies with slightly different isoelectric points, polyclonal antibodies, and antigen-antibody complexes, as well as complex proteins such as IgM pentamer and ß-galactosidase tetramer. Our protocol can be completed within a day, taking approximately 5-6 h, and can be expanded further into Western blot analysis, mass spectrometry analysis, and other analytical methods.


Assuntos
Proteínas , Sefarose/química , Proteínas/análise , Eletroforese em Gel Bidimensional/métodos , Eletroforese em Gel de Poliacrilamida , Eletroforese em Gel de Ágar/métodos , Géis
8.
Biophys Chem ; 296: 106977, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36857888

RESUMO

The effects of salting-in and salting-out salts defined by Hofmeister series on the solution state of bovine serum albumin (BSA) in 50 mM Tris-HCl buffer at pH 7.4 before and after thermal unfolding at 80 °C for 5 min were examined using agarose native gel electrophoresis and mass photometry. Gel electrophoresis showed that salting-in MgCl2, CaCl2 and NaSCN resulted in formation of intermediate structures of BSA upon heating on native gel, while heating in buffer alone resulted in aggregated bands. Mass photometry showed large loss of monomer and oligomers when heated in this buffer, but retaining these structures in the presence of 1 M MgCl2 and NaSCN. To our surprise, salting-out MgSO4 also showed a similar effect on gel electrophoresis and mass photometry. Salting-out NaCl and (NH4)2SO4 resulted in smearing and aggregated bands, which were supported by mass photometry. Aggregation-suppressive ArgHCl also showed oligomer aggregates upon gel electrophoresis and mass photometry.


Assuntos
Soroalbumina Bovina , Tiocianatos , Sefarose , Soroalbumina Bovina/química , Cloreto de Sódio/química , Trometamina , Eletroforese em Gel de Ágar/métodos
9.
Antibodies (Basel) ; 12(1)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36810520

RESUMO

Currently, purification of antibodies is mainly carried out using a platform technology composed primarily of Protein A chromatography as a capture step, regardless of the scale. However, Protein A chromatography has a number of drawbacks, which are summarized in this review. As an alternative, we propose a simple small-scale purification protocol without Protein A that uses novel agarose native gel electrophoresis and protein extraction. For large-scale antibody purification, we suggest mixed-mode chromatography that can in part mimic the properties of Protein A resin, focusing on 4-Mercapto-ethyl-pyridine (MEP) column chromatography.

10.
Anal Biochem ; 662: 114995, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427555

RESUMO

The nucleoprotein (NP) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is abundantly expressed during infection, making it a diagnostic target protein. We analyzed the structure of the NP in solution using a recombinant protein produced in E. coli. A codon-optimized Profinity eXact™-tagged NP cDNA was cloned into pET-3d vector and transformed into E. coli T7 Express. The recombinant protein was first purified via chromatographic step using an affinity tag-based system that was followed by tag cleavage with sodium fluoride, resulting in proteolytic removal of the N-terminal tag sequence. The digested sample was then loaded directly onto a size exclusion chromatography run in the presence of L-Arg-HCl, resulting in removal of host nucleic acids and endotoxin. The molecular mass of the main NP fraction was determined by mass photometry as a dimeric form of NP, consistent with the blue native PAGE results. Interestingly, analysis of the purified NP by our newly developed agarose native gel electrophoresis revealed that it behaved like an acidic protein at low concentration despite its alkaline isoelectric point (theoretical pI = 10) and displayed a unique character of concentration-dependent charge and shape changes. This study should shed light into the behavior of NP in the viral life cycle.


Assuntos
COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , SARS-CoV-2 , Humanos , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , COVID-19/diagnóstico , Eletroforese/métodos , Eletroforese em Gel de Ágar/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Nucleoproteínas , Proteínas Recombinantes/química , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Sefarose
11.
Anal Biochem ; 654: 114817, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35863464

RESUMO

An attempt was made to specifically stain unfolded proteins on agarose native gels. SYPRO Orange is routinely used to detect unfolded protein in differential scanning fluorimetry, which is based on the enhanced fluorescence intensity upon binding to the unfolded protein. We demonstrated that this dye barely bound to the native proteins, resulting in no or faint staining of the native bands, but bound to and stained the unfolded proteins, on agarose native gels. Using bovine serum albumin (BSA), it was shown that staining did not depend on whether BSA was thermally unfolded in the presence of SYPRO Orange or stained after electrophoresis. On the contrary, SYPRO Orange dye stained protein bands in the presence of sodium dodecylsulfate (SDS) due to incorporation of the dye into SDS micelles that bound to the unfolded proteins. This staining resulted in detection of new, intermediately unfolded structure of BSA during thermal unfolding. Such intermediate structure occurred at higher temperature in the presence of ATP.


Assuntos
Corantes Fluorescentes , Soroalbumina Bovina , Trifosfato de Adenosina , Eletroforese em Gel de Ágar , Eletroforese em Gel de Poliacrilamida , Géis , Sefarose , Dodecilsulfato de Sódio , Coloração e Rotulagem
12.
J Chromatogr A ; 1676: 463277, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35809525

RESUMO

Immobilized metal ion affinity chromatography (IMAC) is useful in purification of histidine-tagged or histidine-rich proteins and peptides from a variety of hosts. However, phenolic compounds including polyphenols interfere with IMAC due to their high affinities for the transition metals immobilized on the column resins, which hampers the purification of proteins from plant-based host systems. In contrast to extensive knowledge of the mechanism of the interactions between phenolic compounds and transition metal ions in solution, an understanding of the interactions on the columns, where transition metal ions are immobilized on the resins, remains elusive. This study systematically investigated the affinity of phenolic compounds for transition metal ions by varying the number and position of phenolic hydroxyl groups (OH groups) and using different transition metals-Fe(II), Cu(II) and Ni(II)-on various IMACs, in which the columns were fabricated by equilibrating the cation-exchange column with transition metal solutions. It was found that the more OH groups the aromatic compounds have, the higher the affinity for transition metal ions; in particular, methyl gallate and pyrogallol were permanently bound to the IMAC column, which reflected coordinate bond formation with the transition metal ions. Importantly, the phenolic compounds showed no obvious affinity for the Ni(II)-IMAC column, in contrast to the Fe(II)- and Cu(II)-IMAC columns, whereas imidazole and histidine-tagged proteins showed evident binding to the Ni(II)-IMAC column. Ni(II)-IMAC should thus be especially effective in isolating histidine-tagged and histidine-rich species from phenolic compound-containing systems. These results indicate that the affinity between phenolic compounds and transition metal ions on the column is consistent with the results in solution. They also provide a comprehensive view for devising strategies to improve IMAC purification of target proteins and peptides from samples containing phenolic compounds.


Assuntos
Histidina , Peptídeos , Cátions , Cromatografia de Afinidade/métodos , Compostos Ferrosos , Histidina/química
13.
Int J Biol Macromol ; 215: 512-520, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35752339

RESUMO

A commercially available bovine serum albumin (BSA) was examined by agarose native gel electrophoresis using two different agarose sources, UltraPure and MetaPhor agarose. While UltraPure agarose up to 5 % showed no clear separation of BSA oligomers, MetaPhor agarose clearly demonstrated oligomer bands above 4 %, indicating that the latter agarose has greater molecular sieving effects and is hence characterized to have high resolution for size differences, as probed by a greater slope of Ferguson plot. Physical properties are different between two agaroses. In general, UltraPure agarose has physical strength, while MetaPhor agarose is considerably fragile, but MetaPhor agarose solution is less viscous so that even 10 % gel can be made. Cause of oligomers was shown to be not associated with inter-chain disulfide bonds, but is due to association of native or native-like molecules.


Assuntos
Soroalbumina Bovina , Eletroforese em Gel de Ágar/métodos , Sefarose/química
14.
Antibodies (Basel) ; 11(2)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35645209

RESUMO

In this study, we review the agarose native gel electrophoresis that separates proteins and macromolecular complexes in their native state and transfer of the separated proteins from the agarose gel to membranes by contact blotting which retains the native state of these structures. Green fluorescent protein showed functional state both on agarose gel and blotted membrane. Based on the combined procedures, we discovered conformation-specific monoclonal antibodies against PLXDC2 and SARS-CoV-2 spike protein.

15.
Methods Cell Biol ; 169: 67-95, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35623712

RESUMO

Electrophoresis is one of the most important analytical technologies for characterization of macromolecules and their interactions. Among them, native gel electrophoresis is used to analyze the macromolecules in the native structure. It differs in principle and information from those obtained by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) or blue native polyacrylamide gel electrophoresis (BN-PAGE). SDS-PAGE is carried out in the presence of strong denaturant, SDS, while BN-PAGE is done in the presence of negatively charged dye, e.g., Coomassie brilliant blue, G-250. Here, we describe native gel electrophoresis using agarose gel and a buffer at pH 6.1 composed of histidine and 2-(N-morpholino) ethanesulfonic acid. First, a protocol for vertical and horizontal formats of agarose native gel electrophoresis is described followed by different staining procedures. Then, various examples obtained using the developed procedure will be shown to demonstrate how the technology can be applied to specific cases and the advantages or caveats of the present technology.


Assuntos
Sefarose , Eletroforese em Gel de Poliacrilamida
16.
Biotechniques ; 72(5): 207-218, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383476

RESUMO

We have developed a new Western blotting method of native proteins from agarose-based gel electrophoresis using a buffer at pH 6.1 containing basic histidine and acidic 2-(N-morpholino)ethanesulfonic acid. This gel electrophoresis successfully provided native structures for a variety of proteins and macromolecular complexes. This paper is focused on the Western blotting of native protein bands separated on agarose gels. Two blotting methods from agarose gel to PVDF membrane are introduced here, one by contact (diffusion) blotting and another by electroblotting after pre-treating the agarose gels with SDS. The contact blotting resulted in the transfer of native GFP, native human plexin domain containing protein 2 (PLXDC2) and native SARS-CoV-2 spike protein, which were detected by conformation-specific antibodies generated in-house.


Assuntos
COVID-19 , SARS-CoV-2 , Western Blotting , Eletroforese em Gel de Ágar/métodos , Eletroforese em Gel de Poliacrilamida , Géis , Humanos , Proteínas/química , Sefarose/química , Glicoproteína da Espícula de Coronavírus
17.
Int J Biol Macromol ; 203: 695-702, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35090940

RESUMO

Aromatic interaction plays a crucial role in controlling protein interaction by additives. Here we investigated the interaction of protein salting-in (solubilizing) additives with tryptophan (Trp), tyrosine (Tyr), indole, and proteins based on their fluorescence spectra. Five salting-in additives, i.e., arginine (Arg), urea, guanidine (Gdn), ethylene glycol (EG), and magnesium chloride (MgCl2), showed different effects on the fluorescence properties of Trp and Tyr. Arg significantly reduced fluorescence intensity of Trp and Tyr, as was the case for glycine to a lesser extent. MgCl2 and calcium chloride (CaCl2) showed little effect on the aromatic fluorescence spectra. Gdn also showed little effect on the aromatic fluorescence spectra of Trp and Tyr even at high concentrations. EG increased the aromatic fluorescence intensity of Trp and Tyr with blue-shifted emission wavelength. Urea enhanced fluorescence of Trp and Tyr without altering emission wavelength. These results indicate that the protein solubilizing additives interact with aromatic groups differently.


Assuntos
Proteínas , Triptofano , Fluorescência , Guanidina , Soluções , Espectrometria de Fluorescência , Triptofano/metabolismo , Tirosina
18.
Int J Biol Macromol ; 198: 26-36, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34954298

RESUMO

Solvent additives, including NaCl, arginine hydrochloride (ArgHCl), glycine and sucrose, are used to enhance protein stability or reduce protein aggregation. Here, we studied the effects of these additives on proteins using agarose native gel electrophoresis. Since these additives are used at relatively high concentration, we first confirmed that they do not interfere with the performance of the native gel electrophoresis. Agarose native gel electrophoresis showed that aggregation of bovine serum albumin (BSA) induced by heating was slightly reduced by NaCl and ArgHCl. On the contrary, glycine and sucrose had marginal effects. ArgHCl and NaCl promoted heat aggregation of monoclonal antibody (mAb), while glycine and sucrose stabilized the native mAb. Arginine methyl ester inhibited heat aggregation of lysozyme and, to a much lesser extent, BSA. These results show that agarose native gel electrophoresis can be used to analyze the effects of solvent additives on proteins subjected to heat stresses. SYPRO Orange that stains only unfolded proteins confirmed unfolded structures of soluble aggregates.


Assuntos
Muramidase
19.
Protein J ; 40(6): 867-875, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34709521

RESUMO

Difference circular dichroism (CD) spectroscopy was used here to characterize changes in structure of flexible peptides upon altering their environments. Environmental changes were introduced by binding to a large target structure, temperature shift (or concentration increase) or so-called membrane-mimicking solvents. The first case involved binding of a largely disordered peptide to its target structure associated with chromatin remodeling, leading to a transition into a highly helical structure. The second example was a short 8HD (His-Asp) repeat peptide that can bind metal ions. Both Zn and Ni at µM concentrations resulted in different type of changes in secondary structure, suggesting that these metal ions provide different environments for the peptide to assume unique secondary structures. The third case is related to a few short neuroprotective peptides that were largely disordered in aqueous solution. Increased temperature resulted in induction of significant, though small, ß-sheet structures. Last example was the induction of non-helical structures for short neuroprotective peptides by membrane-mimicking solvents, including trifluoroethanol, dodecylphosphocholine and sodium dodecylsulfate. While these agents are known to induce α-helix, none of the neuropeptides underwent transition to a typical helical structure. However, trifluoroethanol did induce α-helix for the first peptide involved in chromatin remodeling described above in the first example.


Assuntos
Peptídeos , Trifluoretanol , Dicroísmo Circular , Estrutura Secundária de Proteína , Dodecilsulfato de Sódio
20.
Biophys Rev ; 13(4): 459-484, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34471434

RESUMO

Dr. Serge N. Timasheff, our mentor and friend, passed away in 2019. This article is a collection of tributes from his postdoctoral fellows, friends, and daughter, who all have been associated with or influenced by him or his research. Dr. Timasheff is a pioneer of research on thermodynamic linkage between ligand interaction and macromolecular reaction. We all learned a great deal from Dr. Timasheff, not only about science but also about life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...